UPFC Supplementary Controller Design Using Real-Coded Genetic Algorithm for Damping Low Frequency Oscillations in Power Systems

نویسندگان

  • A. K. Baliarsingh
  • S. Panda
  • A. K. Mohanty
  • C. Ardil
چکیده

This paper presents a systematic approach for designing Unified Power Flow Controller (UPFC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. Detailed investigations have been carried out considering the four alternatives UPFC based damping controller namely modulating index of series inverter (mB), modulating index of shunt inverter (mE), phase angle of series inverter (δB ) and phase angle of the shunt inverter (δE ). The design problem of the proposed controllers is formulated as an optimization problem and RealCoded Genetic Algorithm (RCGA) is employed to optimize damping controller parameters. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach. Keywords—Power System Oscillations, Real-Coded Genetic Algorithm (RCGA), Flexible AC Transmission Systems (FACTS), Unified Power Flow Controller (UPFC), Damping Controller.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Design of UPFC Output Feed Back Controller for Power System Stability Enhancement by Hybrid PSO and GSA

In this paper, the optimal design of supplementary controller parameters of a unified powerflow controller(UPFC) for damping low-frequency oscillations in a weakly connected systemis investigated. The individual design of the UPFC controller, using hybrid particle swarmoptimization and gravitational search algorithm (PSOGSA)technique under 3 loadingoperating conditions, is discussed. The effect...

متن کامل

Optimal design of UPFC-based damping controller using imperialist competitive algorithm

In this paper, the optimal design of supplementary controller parameters of a unified power flow controller (UPFC) to damp low-frequency oscillations in a weakly connected system is investigated. The individual design of the UPFC controller, using the imperialist competitive algorithm (ICA) technique over a wide range of operating conditions, is discussed. The effectiveness and validity of the ...

متن کامل

Low Frequency Oscillations Suppression via CPSO based Damping Controller

In this paper, the Unified Power Flow Controller (UPFC) is enhanced with a Chaotic Particle Swarm Optimization (CPSO) Damping Controller in order to mitigate the Low Frequency Oscillations (LFO) in a Single Machine Infinite Bus (SMIB) power system. The designed damping controller is an optimized lead-lag controller, which extracts the speed deviation of the generator rotor and generates the out...

متن کامل

Coordinated Design of PSS and SSSC Damping Controller Considering Time Delays using Biogeography-based Optimization Algorithm

In this paper, a consistent pattern with the optimal coordinated design of PSS and SSSC controller to improve the damping of low frequency oscillations is shown. In this design, sensing and signal transmission time delays are considered as effectiveness parameters. The design problem has been considered an optimization problem and biogeography-based optimization (BBO) algorithm is used for sear...

متن کامل

Performance Improvement of Power System Stability by Using Multiple Damping Controllers Based on PSS and the UPFC

Enhancement of stability of the power system has been achieved by the application of Unified power flow controller (UPFC) device with an additional supplementary controller. This supplementary damping controller can be installed on any control channel of the UPFC inputs to implement the task of power oscillation damping (POD) controller. We have presented a comprehensive assessment and performe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010